login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
0

%I #23 Feb 02 2024 08:31:40

%S 1,6,36,217,1302,7812,46873,281238,1687428,10124569,60747414,

%T 364484484,2186906905,13121441430,78728648580,472371891481,

%U 2834231348886,17005388093316,102032328559897,612193971359382,3673163828156292,22038982968937753,132233897813626518

%N Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,0,1,-6).

%F a(n) = 6a(n-1) + a(n-3) - 6a(n-4).

%F G.f.: x/((1-x^3)*(1-6*x)) = 36/(215*(1-6*x))+(-6*x^2-x-36)/(215*(1-x^3)). - _Tani Akinari_, Jul 18 2014

%F a(n) = floor((36/215)*6^n). - _Tani Akinari_, Jul 18 2014

%t LinearRecurrence[{6, 0, 1, -6}, {1, 6, 36, 217}, 30] (* or *)

%t Floor[36/215*6^Range[30]] (* _Paolo Xausa_, Feb 02 2024 *)

%o (PARI) Vec(x/((1-x^3)*(1-6*x)) + O(x^50)) \\ _Tani Akinari_, Jul 18 2014

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_