Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Oct 31 2022 02:09:28
%S 0,1,11,12,121,122,132,133,1331,1332,1342,1343,1452,1453,1463,1464,
%T 14641,14642,14652,14653,14762,14763,14773,14774,15972,15973,15983,
%U 15984,16093,16094,16104,16105,161051,161052,161062,161063,161172
%N Sums of distinct powers of 11.
%C Numbers without any base-11 digits greater than 1.
%C a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - _Philippe Deléham_, Oct 17 2011
%H T. D. Noe, <a href="/A033047/b033047.txt">Table of n, a(n) for n = 0..1023</a>
%H Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 45.
%F a(n) = Sum_{i=0..m} d(i)*11^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
%F a(n) = A097257(n)/10.
%F a(2n) = 11*a(n), a(2n+1) = a(2n)+1.
%F a(n) = Sum_{k>=0} A030308(n,k)*11^k. - _Philippe Deléham_, Oct 17 2011
%F G.f.: (1/(1 - x))*Sum_{k>=0} 11^k*x^(2^k)/(1 + x^(2^k)). - _Ilya Gutkovskiy_, Jun 04 2017
%t With[{k = 11}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* _Michael De Vlieger_, Oct 28 2022 *)
%o (PARI) {for(vv=0,35,
%o bvv=binary(vv);
%o texp=0;btb=0;
%o forstep(i=length(bvv),1,-1,btb=btb+bvv[i]*11^texp;texp++);
%o print1(btb,", "))} \\ _Douglas Latimer_, May 12 2012
%o (PARI) a(n)=fromdigits(binary(n),11) \\ _Charles R Greathouse IV_, Jan 11 2017
%Y Cf. A000695, A005836, A033042-A033052.
%Y Row 10 of array A104257.
%K nonn,base,easy
%O 0,3
%A _Clark Kimberling_
%E Extended by _Ray Chandler_, Aug 03 2004