Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Oct 31 2022 02:09:15
%S 0,1,8,9,64,65,72,73,512,513,520,521,576,577,584,585,4096,4097,4104,
%T 4105,4160,4161,4168,4169,4608,4609,4616,4617,4672,4673,4680,4681,
%U 32768,32769,32776,32777,32832,32833,32840,32841,33280,33281,33288
%N Sums of distinct powers of 8.
%C Numbers without any base-8 digits greater than 1.
%C Every nonnegative n is a unique sum of the form a(p)+2a(q)+4a(r). This gives a one-to-one map of the set N_0 of all nonnegative integers to (N_0)^3. Furthermore, if, for a fixed positive integer m, to consider all sums of distinct powers of 2^m, then one can obtain a one-to-one map of the set N_0 to (N_0)^m. - _Vladimir Shevelev_, Nov 15 2008
%H David A. Corneth, <a href="/A033045/b033045.txt">Table of n, a(n) for n = 0..9999</a> (first 1024 terms from T. D. Noe)
%H Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 45.
%H Michael Penn, <a href="https://www.youtube.com/watch?v=e-Q_PpfC9do">"almost" a generating function...</a>, YouTube video, 2020.
%F a(n) = Sum_{i=0..m} d(i)*8^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
%F a(n) = A097254(n)/7.
%F a(2n) = 8*a(n), a(2n+1) = a(2n)+1.
%F a(n) = Sum_{k>=0} A030308(n,k)*8^k. - _Philippe Deléham_, Oct 19 2011
%F G.f.: (1/(1 - x))*Sum_{k>=0} 8^k*x^(2^k)/(1 + x^(2^k)). - _Ilya Gutkovskiy_, Jun 04 2017
%e a(7)=72 because 72_10 = 110_8.
%o (PARI) A033045(n,b=8)=subst(Pol(binary(n)),'x,b) \\ _M. F. Hasler_, Feb 01 2016
%o (PARI) a(n) = fromdigits(binary(n), 8) \\ _David A. Corneth_, Dec 17 2020
%Y Cf. A000695, A005836, A033043-A033052.
%Y Row 8 of array A104257.
%K nonn,base,easy
%O 0,3
%A _Clark Kimberling_
%E More terms from _Patrick De Geest_, Dec 23 2000