login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^(m-i) has d(i)=0 for all odd i.
1

%I #14 Feb 12 2021 22:04:26

%S 1,2,3,4,5,6,7,8,16,24,32,40,48,56,64,65,66,67,68,69,70,71,128,129,

%T 130,131,132,133,134,135,192,193,194,195,196,197,198,199,256,257,258,

%U 259,260,261,262,263,320,321,322,323,324,325,326

%N Numbers whose base-8 representation Sum_{i=0..m} d(i)*8^(m-i) has d(i)=0 for all odd i.

%H Robert Israel, <a href="/A032943/b032943.txt">Table of n, a(n) for n = 1..10000</a>

%p b:= 8:

%p f:= proc(n, j) local L, m;

%p L:= convert(n, base, b);

%p m:= nops(L);

%p j*add(L[i+1]*b^(2*i), i=0..m-1)

%p end proc:

%p seq(seq(seq(f(n, j), n=b^k..b^(k+1)-1), j=[1, b]), k=0..2); # _Robert Israel_, Nov 16 2020

%Y Cf. A007094 (numbers in base 8).

%K nonn,base

%O 1,2

%A _Clark Kimberling_

%E Definition corrected by _Robert Israel_, Nov 16 2020