login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032790
Palindromic quotients (k*(k+1)*(k+2)) / (k+(k+1)+(k+2)).
3
0, 1, 5, 8, 33, 161, 616, 3333, 8008, 18881, 54945, 333333, 33333333, 120232021, 124060421, 161656161, 185464581, 541202145, 677191776, 3333333333, 6316116136, 333333333333, 544721127445, 616947749616, 3333169613333, 3333802083333, 5412843482145, 6352230322536
OFFSET
1,3
COMMENTS
For all i >= 1, 3^{2*i} is a term arising from k = 9^i, where ^ is repeated concatenation. - Michael S. Branicky, Jan 24 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..48
MATHEMATICA
Select[Table[Times@@Range[n, n+2]/(3n+3), {n, 0, 317*10^4}], PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 06 2019 *)
PROG
(Python)
from itertools import count, islice
def ispal(n): s = str(n); return s == s[::-1]
def agen():
for k in count(0):
q, r = divmod(k*(k+2), 3)
if r == 0 and ispal(q):
yield k, q
print([q for k, q in islice(agen(), 31)]) # Michael S. Branicky, Jan 24 2022
CROSSREFS
Cf. A032789.
Sequence in context: A099631 A199396 A275003 * A187997 A188065 A204676
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
a(26) and beyond from Michael S. Branicky, Jan 24 2022
STATUS
approved