Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 25 2022 08:30:38
%S 0,1,3,4,9,21,42,99,154,237,405,999,9999,18991,19291,22021,23587,
%T 40293,45072,99999,137652,999999,1278343,1360456,3162199,3162499,
%U 4029705,4365396,4418236,6052891,9999999,31496589,40289205,41276535,44295036,56353251,99999999
%N Numbers k such that (k*(k+1)*(k+2)) / (k+(k+1)+(k+2)) is a palindrome.
%C Equivalently, numbers k such that (2k + k^2)/3 is a palindrome. - _Harvey P. Dale_, Sep 02 2015
%C For all i >= 1, 9^i is a term with corresponding quotient 3^{2*i}, where ^ is repeated concatenation. - _Michael S. Branicky_, Jan 24 2022
%H Michael S. Branicky, <a href="/A032789/b032789.txt">Table of n, a(n) for n = 1..48</a>
%t palQ[n_]:=Module[{c=(2n+n^2)/3,id},id=If[IntegerQ[c],IntegerDigits[c],{1,2}];id==Reverse[id]]; Select[Range[0,10^7],palQ] (* _Harvey P. Dale_, Sep 02 2015 *)
%o (Python)
%o from itertools import count, islice
%o def ispal(n): s = str(n); return s == s[::-1]
%o def agen():
%o for k in count(0):
%o q, r = divmod(k*(k+2), 3)
%o if r == 0 and ispal(q):
%o yield k, q
%o print([k for k, q in islice(agen(), 31)]) # _Michael S. Branicky_, Jan 24 2022
%Y Cf. A002113, A032790.
%K nonn,base
%O 1,3
%A _Patrick De Geest_, May 15 1998
%E Definition clarified by _Harvey P. Dale_, Sep 02 2015
%E a(32) and beyond from _Michael S. Branicky_, Jan 24 2022