Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 05 2022 08:58:56
%S 2437,5620,7358,11111,13308,13332,13650,14612,19737,19817,24217,25213,
%T 26302,27971,28472,28838,29289,29542,29650,31328,33027,33170,35914,
%U 35970,36186,37977,38327,39127,39608,40078,41165,41528,42422,43277,44657,45649,47172,47382
%N All 81 combinations of prefixing and following a(n) by a single digit are nonprime.
%H Robert Israel, <a href="/A032734/b032734.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Pri#piden">Index entries for primes involving decimal expansion of n</a>
%e 2437 prefixed and followed with a pair of digits from (1,2,3,4,5,6,7,8,9) never yields a prime, e.g., '9'2437'1' = 7 * 37 * 43 * 83.
%p isA032734 := proc(n)
%p for k from 1 to 9 do
%p for k2 from 1 to 9 do
%p dgs := [k,op(convert(n,base,10)),k2] ;
%p dgsn := add( op(i,dgs)*10^(i-1),i=1..nops(dgs)) ;
%p if isprime(dgsn) then
%p return false;
%p end if;
%p end do:
%p end do:
%p return true;
%p end proc:
%p for n from 1 to 50000 do
%p if isA032734(n) then
%p printf("%d,",n);
%p end if;
%p end do: # _R. J. Mathar_, Oct 22 2011
%p filter:= proc(n) local d,i,j;
%p d:= 10^(ilog10(n)+2);
%p not ormap(isprime,[seq(seq(d*i+10*n+j,j=[1,3,5,7,9]),i=1..9)])
%p end proc:
%p select(filter,[$1..10^5]); # _Robert Israel_, Jul 07 2016
%t ok[n_] := With[{id = IntegerDigits[n]}, Select[ Flatten[ Table[ FromDigits[ Join[{j}, id, {k}]], {j, 1, 9}, {k, 1, 9}], 1], PrimeQ, 1] == {}]; A032734 = {}; n = 1; While[n < 50000, If[ok[n], Print[n]; AppendTo[A032734, n]]; n++]; A032734(* _Jean-François Alcover_, Nov 23 2011 *)
%t Select[Range[50000],NoneTrue[Flatten[Table[FromDigits[Join[{x}, IntegerDigits[ #],{y}]],{x,9},{y,9}]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 07 2018 *)
%o (PARI) is_A032734(n)=p=10^#Str(n*=10);forstep(k=n+p,n+9*p,p,nextprime(k)>k+9 || return);1 \\ _M. F. Hasler_, Oct 22 2011
%o (Python)
%o from sympy import isprime
%o def ok(n):
%o s, fdigs, edigs = str(n), "123456789", "1379"
%o return not any(isprime(int(f+s+e)) for f in fdigs for e in edigs)
%o print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Sep 05 2022
%Y Cf. A032682, A032683, A032684, A032685.
%Y CF. A032702-A032733.
%K nonn,nice,base
%O 1,1
%A _Patrick De Geest_, May 15 1998