

A032667


Digit '4' concatenated with a(n) is a prime.


2



1, 3, 7, 19, 21, 31, 33, 39, 43, 49, 57, 61, 63, 67, 79, 87, 91, 99, 111, 127, 129, 133, 139, 153, 157, 159, 177, 201, 211, 217, 219, 229, 231, 241, 243, 253, 259, 261, 271, 273, 283, 289, 297, 327, 337, 339, 349, 357, 363, 373, 391, 397, 409
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Obviously there can be no even terms in this sequence.  Alonso del Arte, Jun 18 2017


LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1740 from Vincenzo Librandi)


EXAMPLE

Concatenate 4 and 1 to get 41, which is prime, so 1 is in the sequence.
Concatenate 4 and 3 to get 43, which is prime, so 3 is in the sequence.
Concatenate 4 and 5 to get 45 = 3^2 * 5, which is not prime, so 5 is not in the sequence.


MATHEMATICA

Select[2Range[250]  1, PrimeQ[FromDigits[Join[{4}, IntegerDigits[#]]]] &] (* Alonso del Arte, Jun 18 2017 *)


PROG

(PARI) isok(n) = isprime(eval(concat(4, Str(n)))); \\ Michel Marcus, Jun 19 2017


CROSSREFS

Cf. other digit 'd' concatenated with a(n) is prime sequences: A032664 (d = 1), A032665 (d = 2), A032666 (d = 3), A032668 (d = 5), A032669 (d = 6), A032670 (d = 7), A032671 (d = 8), A032672 (d = 9), A000040 (d = 0).
Sequence in context: A242170 A032675 A089749 * A109991 A248219 A322963
Adjacent sequences: A032664 A032665 A032666 * A032668 A032669 A032670


KEYWORD

nonn,base


AUTHOR

Patrick De Geest, May 15 1998


EXTENSIONS

Offset adjusted at the suggestion of Michel Marcus by Alonso del Arte, Jun 18 2017


STATUS

approved



