login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 223*2^k+1 is prime.
1

%I #30 Dec 21 2024 09:47:48

%S 8,10,22,44,58,62,68,82,100,104,118,230,260,440,446,512,700,892,932,

%T 1240,1456,2438,4982,5090,6496,14678,17944,23786,27838,39866,46322,

%U 52358,61700,68584,78244,180410,397096,404962,693656,803446,871438,1065400,1356316

%N Numbers k such that 223*2^k+1 is prime.

%H Jeppe Stig Nielsen, <a href="/A032488/b032488.txt">Table of n, a(n) for n = 1..48</a>

%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%t Select[Range[1000], PrimeQ[223*2^# + 1] & ] (* _Robert Price_, Dec 19 2018 *)

%o (PARI) is(n)=ispseudoprime(223*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017

%K nonn,hard

%O 1,1

%A _N. J. A. Sloane_.

%E a(36)-a(43) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 19 2018