Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Dec 23 2024 11:36:16
%S 6,7,9,18,19,22,30,34,42,106,190,262,339,354,379,478,523,690,718,855,
%T 963,1087,2478,3309,3862,4155,5098,6678,12898,14226,14274,18738,20065,
%U 24390,44079,103417,108850,112374,142462,280438,514927,650934,689437,1579426
%N Numbers k such that 159*2^k + 1 is prime.
%C The subsequence of prime values starts 7, 19, 379, 523, 1087, ... - _Muniru A Asiru_, Apr 28 2019
%H Jeppe Stig Nielsen, <a href="/A032456/b032456.txt">Table of n, a(n) for n = 1..50</a>
%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>
%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>
%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>
%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>
%p select(k->isprime(159*2^k+1),[$0..1000]); # _Muniru A Asiru_, Dec 21 2018
%t Select[Range[1000], PrimeQ[159*2^# + 1] & ] (* _Robert Price_, Dec 18 2018 *)
%o (PARI) is(n)=ispseudoprime(159*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017
%o (Magma) [n: n in [1..1000] | IsPrime(159*2^n+1)]; // _G. C. Greubel_, Apr 28 2019
%o (Sage) [n for n in (1..1000) if is_prime(159*2^n+1)] # _G. C. Greubel_, Apr 28 2019
%o (GAP) Filtered([1..1000], k-> IsPrime(159*2^k+1)); # _G. C. Greubel_, Apr 28 2019
%K nonn,hard
%O 1,1
%A _N. J. A. Sloane_
%E a(36)-a(44) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 18 2018