

A032221


Number of ways to partition n labeled elements into pie slices of different sizes of at least 2, allowing the pie to be turned over.


1



1, 0, 1, 1, 1, 11, 16, 57, 85, 1507, 2896, 12563, 51074, 138789, 7999447, 20571904, 108097917, 509724227, 3208109968, 10079065623, 1222567789870, 3713826929467, 23585723568309, 124658237924300, 835203476167702, 6007218866597341, 26107540823949781
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200
C. G. Bower, Transforms (2)


FORMULA

"DGJ" (bracelet, element, labeled) transform of 0, 1, 1, 1...


PROG

(PARI) seq(n)=[subst(serlaplace(p/y + polcoeff(p, 1) + polcoeff(p, 2)), y, 1)/2  p < Vec(y1+serlaplace(prod(k=2, n, 1 + x^k*y/k! + O(x*x^n))))] \\ Andrew Howroyd, Sep 11 2018


CROSSREFS

Sequence in context: A184064 A302207 A032311 * A032146 A032051 A085487
Adjacent sequences: A032218 A032219 A032220 * A032222 A032223 A032224


KEYWORD

nonn


AUTHOR

Christian G. Bower


EXTENSIONS

a(0)=1 prepended and terms a(24) and beyond from Andrew Howroyd, Sep 11 2018


STATUS

approved



