login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of necklaces with n labeled beads of 3 colors.
0

%I #35 Jan 30 2020 21:29:14

%S 3,9,54,486,5832,87480,1574640,33067440,793618560,21427701120,

%T 642831033600,21213424108800,763683267916800,29783647448755200,

%U 1250913192847718400,56291093678147328000,2701972496551071744000,137800597324104658944000,7441232255501651582976000

%N Number of necklaces with n labeled beads of 3 colors.

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H Alexsandar Petojevic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL5/Petojevic/petojevic5.html">The Function vM_m(s; a; z) and Some Well-Known Sequences</a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7

%H <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>

%F "CIJ" (necklace, indistinct, labeled) transform of 3, 0, 0, 0...

%F E.g.f.: log(1/(1-3*x)).

%F a(n) = 3^n * (n-1)!. - _Vaclav Kotesovec_, Jan 05 2014

%F D-finite with recurrence: a(n) +3*(-n+1)*a(n-1)=0. - _R. J. Mathar_, Jan 28 2020

%t s=3; lst={s}; Do[s+=n*s+s; AppendTo[lst, s], {n, 1, 5!, 3}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008 *)

%t Rest[With[{nn=20}, CoefficientList[Series[Log[1/(1-3x)], {x,0,nn}], x] Range[0,nn]!]] (* _Harvey P. Dale_, Sep 22 2011 *)

%o (PARI) Vec(serlaplace(log(1/(1-3*'x+O('x^66))))) /* _Joerg Arndt_, Jan 25 2013 */

%K nonn,easy

%O 1,1

%A _Christian G. Bower_