login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled series-reduced dyslexic planted planar trees (root unlabeled) with n leaves.
1

%I #17 Sep 25 2019 07:47:58

%S 1,1,6,57,750,12645,260190,6322365,177181830,5625873225,199608636150,

%T 7826601269025,336070622037150,15684327120386925,790493799998652750,

%U 42790196611446409125,2475921578709979149750,152499324058939789556625,9961887269457311273835750,687922376268803482237055625

%N Number of labeled series-reduced dyslexic planted planar trees (root unlabeled) with n leaves.

%H Andrew Howroyd, <a href="/A032119/b032119.txt">Table of n, a(n) for n = 1..200</a>

%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>

%H Cassandra Durell, Stefan Forcey, <a href="https://arxiv.org/abs/1905.09160">Level-1 Phylogenetic Networks and their Balanced Minimum Evolution Polytopes</a>, arXiv:1905.09160 [math.CO], 2019.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F Doubles (index 2+) under "BIJ" (reversible, indistinct, labeled) transform.

%F E.g.f.: series reversion of x*(2 - 3*x)/(2*(1-x)). - _Andrew Howroyd_, Sep 19 2018

%t m = 21; egf = InverseSeries[x(2 - 3x)/(2(1-x)) + O[x]^m];

%t CoefficientList[egf, x]*Range[0, m-1]! // Rest (* _Jean-François Alcover_, Sep 25 2019 *)

%o (PARI) Vec(serlaplace(serreverse(x*(2 - 3*x)/(2*(1-x)) + O(x^20)))) \\ _Andrew Howroyd_, Sep 19 2018

%K nonn,eigen

%O 1,3

%A _Christian G. Bower_

%E Terms a(18) and beyond from _Andrew Howroyd_, Sep 19 2018