Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 11 2019 06:25:40
%S 1,2,1,5,5,7,19,21,33,41,101,109,175,231,321,623,761,1087,1495,2109,
%T 2661,4985,5849,8557,11251,15831,20373,27743,44357,55135,76123,101373,
%U 136689,178673,240125,303997,475183,578271,793809,1024991,1387985,1763719,2363671
%N "AFK" (ordered, size, unlabeled) transform of 2,1,1,1,...
%C Number of compositions of n into distinct parts if there are 2 kinds of part 1. a(3) = 5: 3, 21, 21', 12, 1'2.
%H Alois P. Heinz, <a href="/A032006/b032006.txt">Table of n, a(n) for n = 0..1000</a>
%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>
%p b:= proc(n, i, p) option remember;
%p `if`(n=0, p!, `if`(i<1, 0, b(n, i-1, p)+
%p `if`(i>n, 0, `if`(n=1, 2, 1)*b(n-i, i-1, p+1))))
%p end:
%p a:= n-> b(n$2, 0):
%p seq(a(n), n=0..45); # _Alois P. Heinz_, Sep 05 2015
%t b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p] + If[i > n, 0, If[n == 1, 2, 1]*b[n - i, i - 1, p + 1]]]];
%t a[n_] := b[n, n, 0];
%t a /@ Range[0, 40] (* _Jean-François Alcover_, Sep 11 2019, after _Alois P. Heinz_ *)
%o (PARI) seq(n)={apply(p->subst(serlaplace(p), y, 1), Vec((1 + 2*x*y)*prod(k=2, n, 1 + x^k*y + O(x*x^n))))} \\ _Andrew Howroyd_, Jun 21 2018
%Y Cf. A032303.
%Y Cf. A032005, A032007, A032008.
%K nonn
%O 0,2
%A _Christian G. Bower_
%E a(0)=1 prepended by _Alois P. Heinz_, Sep 05 2015