login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with exactly two distinct base-10 digits.
14

%I #49 Oct 12 2021 07:56:08

%S 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35,

%T 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,

%U 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,100,101,110,112,113,114,115,116,117,118,119,121,122,131,133,141,144,151,155,161,166

%N Numbers with exactly two distinct base-10 digits.

%C The three-digit terms are given by A210666(1,...,244). For numbers with exactly two distinct (but unspecified) digits in other bases, see A031948-A031954. For numbers made of two *given* digits, see A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). - _M. F. Hasler_, Apr 04 2015

%C A235154 is a subsequence. - _Altug Alkan_, Dec 03 2015

%C A235717 is a subsequence. - _Robert Israel_, Dec 03 2015

%H Reinhard Zumkeller, <a href="/A031955/b031955.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.

%F A043537(a(n)) = 2. - _Reinhard Zumkeller_, Dec 03 2009

%p M:= 5: # to get all terms < 10^M

%p sort([seq(seq(seq(seq(add(10^(m-j)*`if`(member(j,S2),d2,d1),j=1..m) ,

%p S2 = combinat:-powerset({$2..m}) minus {{}}),

%p d2 = {$0..9} minus {d1}), d1 = 1..9), m=2..M)]); # _Robert Israel_, Dec 03 2015

%t Select[Range@ 166, Length@ Union@ IntegerDigits@ # == 2 &] (* _Michael De Vlieger_, Dec 03 2015 *)

%o (Haskell)

%o a031955 n = a031955_list !! (n-1)

%o a031955_list = filter ((== 2) . a043537) [0..]

%o -- _Reinhard Zumkeller_, Feb 05 2012

%o (PARI) is_A031955(n)=#Set(digits(n))==2 \\ _M. F. Hasler_, Apr 04 2015

%o (Python)

%o def ok(n): return len(set(str(n))) == 2

%o print(list(filter(ok, range(167)))) # _Michael S. Branicky_, Oct 12 2021

%Y Different from A029742.

%Y Cf. A043638, A101594, A031948, A031949, A031950, A031951, A031952, A031953, A031954, A235154, A235717.

%K nonn,base,easy

%O 1,1

%A _Clark Kimberling_

%E Name edited by _Charles R Greathouse IV_, Feb 13 2017