

A031614


Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted the two central terms are both 26.


0



170, 1609, 8513, 8698, 20857, 29753, 38641, 49573, 50914, 52273, 61865, 62861, 64877, 77725, 90529, 91733, 93554, 94778, 95393, 96629, 106901, 108209, 108866, 110849, 111514, 112181, 113521, 124633, 128893, 143725, 146765, 149837, 152941
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



MATHEMATICA

cf26Q[n_]:=Module[{s=Sqrt[n], cf, len}, If[IntegerQ[s], cf={1, 1}, cf = ContinuedFraction[s][[2]]]; len=Length[cf]; OddQ[len]&&cf[[(len+1)/2]] == 26]; Select[Range[153000], cf26Q] (* Harvey P. Dale, Nov 23 2014 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



