Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Oct 04 2021 16:18:22
%S 1,2,3,4,5,7,8,11,13,17,18,21,29,34,47,48,55,72,76,89,122,123,144,199,
%T 233,305,322,323,329,377,521,610,842,843,987,1292,1353,1364,1597,2207,
%U 2208,2255,2584,3571,4181,5473,5777,5778,5796,6765,9349
%N Integer ratios of Fibonacci numbers F(m)/F(n).
%C Phong shows that no member of this sequence is perfect. - _Charles R Greathouse IV_, Jul 26 2011
%C Every number in the sequence except 1 can be written uniquely as the quotient of two Fibonacci numbers. - _M. Farrokhi D. G._, Jul 24 2020
%C From the Binet's formula for the n-th Fibonacci number, F(n), it can be demonstrated that F(n) / F(d) can be an integer only if d is a divisor of n. See also the M. Farrokhi D. G. link. - _Robert G. Wilson v_, Sep 22 2021
%H T. D. Noe, <a href="/A031121/b031121.txt">Table of n, a(n) for n = 1..1000</a>
%H M. Farrokhi D. G., <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Farrokhi/farrokhi20.html">Some remarks on the equation F_n=kF_m in Fibonacci numbers</a>, J. Integer Seq. 10 (2007), no. 5, Article 07.5.7, 9 pp.
%H Florian Luca and V. Janitzio Mejía Huguet, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_37_from107to124.pdf">On perfect numbers which are ratios of two Fibonacci numbers</a>, Annales Mathematicae et Informaticae 37 (2010), pp. 107-124.
%H Bui Minh Phong, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AAPASM_26_from3to8.pdf">Perfect numbers concerning Fibonacci sequence</a>, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 26 (1999), pp. 3-8.
%t Union[Select[First[#]/Last[#]&/@Tuples[Fibonacci[Range[50]],2],IntegerQ]] (* _Harvey P. Dale_, Feb 25 2012 *)
%t mx = 20000; lmt = 40; lst = {}; f[n_] := AppendTo[lst, Select[ Fibonacci@ n/Fibonacci@# & /@ Most@ Divisors@ n, # < mx &]]; Union@ Flatten@ Array[f, lmt] (* _Robert G. Wilson v_, Sep 22 2021 *)
%o (PARI) v=List();for(m=1,100,fordiv(m,d,listput(v,fibonacci(m)/fibonacci(d))));vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Jul 26 2011
%o (GAP) Filtered(Set(List(Cartesian([1..21], [1..21]), x -> Fibonacci(x[1] * x[2])/Fibonacci(x[1]))), x -> x < 10000); # _M. Farrokhi D. G._, Jul 24 2020
%Y Cf. A000045, A031122.
%K nonn,easy,nice
%O 1,2
%A _Dan Hoey_
%E More terms from _John W. Layman_, May 22 1999