login
8-automorphic numbers: final digits of 8*n^2 agree with n.
1

%I #21 Dec 07 2019 12:18:21

%S 2,72,672,8672,88672,388672,3388672,23388672,223388672,223388672,

%T 10223388672,510223388672,7510223388672,67510223388672,

%U 967510223388672,7967510223388672,67967510223388672

%N 8-automorphic numbers: final digits of 8*n^2 agree with n.

%C a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and 8*a(n) - 1 is divisible by 5^n. - _Eric M. Schmidt_, Aug 18 2012

%H Eric M. Schmidt, <a href="/A030993/b030993.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>

%H <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AutomorphicNumber.html">Automorphic Number</a>

%o (Sage) [crt(0, inverse_mod(8, 5^n), 2^n, 5^n) for n in range(1, 1001)] # _Eric M. Schmidt_, Aug 18 2012

%K nonn,base

%O 1,1

%A _Eric W. Weisstein_