login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.
9

%I #24 Apr 05 2020 02:28:44

%S 2,13,101,619,3641,20028,106812,554352,2828660,14244878,71077246,

%T 352184306,1736118578,8525182798,41741378126,203929434766,

%U 994680883360,4845761306611,23586192274443,114731539477465,557859497501007,2711772157178038,13180227306740726

%N Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.

%C See reference for precise definition.

%H S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, <a href="https://doi.org/10.1021/ci00009a021">Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices</a>, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a030/A030519.java">Java program</a> (github)

%F a(n+4) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), and L'(n)=A039660(n) for n >= 4. - _Sean A. Irvine_, Apr 02 2020

%o (PARI) Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660

%o M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879

%o N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212

%o b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;

%o a(n) = b(n-4); \\ _Michel Marcus_, Apr 03 2020

%Y Cf. A026106, A026118, A026298, A030519, A030520, A030525, A030529, A030532, A030534.

%K nonn

%O 8,1

%A _N. J. A. Sloane_

%E More terms and title improved by _Sean A. Irvine_, Apr 02 2020