login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030507
Graham-Sloane-type lower bound on the size of a ternary (n,3,7) constant-weight code.
1
9, 61, 243, 732, 1837, 4056, 8136, 15149, 26571, 44374, 71125, 110094, 165376, 242014, 346136, 485103, 667662, 904109, 1206463, 1588650, 2066688, 2658897, 3386099, 4271843, 5342629, 6628148, 8161525, 9979578, 12123079, 14637028
OFFSET
7,1
LINKS
Patric R. J. Östergård, Mattias Svanström, Ternary Constant Weight Codes, The Electronic Journal of Combinatorics, Volume 9 (2002), Research Paper #R41.
M. Svanström, A lower bound for ternary constant weight codes, IEEE Trans. on Information Theory, Vol. 43, pp. 1630-1632, Sep. 1997.
Mattias Svanström, A Class of Perfect Ternary Constant-Weight Codes, Designs, Codes and Cryptography, Volume 18, Issue 1-3 , pp 223-229.
FORMULA
a(n) = ceiling (binomial (n, w) * 2^w / (2*n + 1)) for w = 7.
MAPLE
A:= n -> ceil(binomial(n, 7)*2^7/(2*n+1)):
map(A, [$7 .. 60]); # Robert Israel, Jun 22 2015
CROSSREFS
Sequence in context: A159037 A138589 A058777 * A172208 A202660 A202120
KEYWORD
nonn
AUTHOR
Mattias Svanstrom (mattias(AT)isy.liu.se)
EXTENSIONS
Formula edited by Robert Israel, Jun 22 2015
STATUS
approved