OFFSET
1,1
EXAMPLE
1 in binary is 1.
3 in binary is 11.
5 in binary is 101.
7 in binary is 111.
9 in binary is 1001.
Putting those together, we obtain 1111011111001. Then, splitting bit by bit, we get 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, the beginning of this sequence.
MATHEMATICA
Flatten[Table[IntegerDigits[2n - 1, 2], {n, 50}]] (* Harvey P. Dale, Aug 06 2013 *)
PROG
(Scala) (1 to 31 by 2).map(Integer.toString(_, 2)).mkString.split("").map(Integer.parseInt(_)).toList // Alonso del Arte, Feb 10 2020
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved