login
A030270
Number of nonisomorphic and nonantiisomorphic reflexive transitive and cotransitive (complement is transitive) relations.
1
1, 1, 3, 5, 12, 24, 58, 128, 309, 717, 1731, 4109, 9920, 23780, 57410, 138192, 333625, 804457, 1942131, 4686341, 11313828, 27308256, 65927962, 159150320, 384222861, 927562581, 2239334163, 5406150125, 13051600952, 31509157004
OFFSET
0,3
LINKS
Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 21.
FORMULA
a(n) = (A001333(n) + A001333(floor((n+2)/2))) / 2.
MATHEMATICA
Table[((-I)^n ChebyshevT[n, I] + (-I)^# ChebyshevT[#, I])/2 &[Floor[(n + 2)/2]], {n, 0, 29}] (* Michael De Vlieger, Aug 22 2024 *)
CROSSREFS
Sequence in context: A186334 A303587 A151524 * A129757 A135019 A141685
KEYWORD
nonn,easy
STATUS
approved