login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030163
Solutions x of 2*uphi(x)=x, where uphi is the unitary phi function (A047994).
10
2, 12, 168, 240, 14880, 65280, 4294901760, 7608944640, 1125874137169920, 18446744069414584320
OFFSET
1,1
PROG
(PARI) uphi(n) = my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
isok(n) = uphi(n) == n/2; \\ Michel Marcus, Feb 13 2018
(PARI) solve_uphi(N, D, limit) = {my(g, f, uphi, sol, p, n, pn, uphipn, tmp, ll); sol = []; g = gcd(N, D); N /= g; D /= g; if (D==1, if (N==1, sol = [1]); sol; , f = factor(D); uphi = prod(i=1, #f~, f[i, 1]^f[i, 2]-1); if (uphi<N, sol=[], sol = []; p = f[length(f~), 1]; n = f[length(f~), 2]; pn = p^n; uphipn = p^n-1; while(pn<=limit, tmp = solve_uphi(N*pn, D*uphipn, limit/pn); for (i=1, length(tmp), if (gcd(pn, tmp[i])==1, sol = concat(sol, pn*tmp[i]); ); ); n++; pn *= p; uphipn = p^n-1; ); if (uphi == N, sol = concat(sol, [D])); ); ); select(x->(x <= limit), vecsort(sol, , 8)); }
solve_uphi(1, 2, 10^20) \\ Michel Marcus, Jun 07 2018
CROSSREFS
Cf. A047994.
Sequence in context: A201007 A226058 A120958 * A368981 A255163 A052728
KEYWORD
nonn,more
EXTENSIONS
Corrected offset and keyword more by Michel Marcus, Feb 13 2018
STATUS
approved