login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that all digits of p^2 appear in p.
2

%I #12 Nov 01 2023 21:52:26

%S 1049,17923,49261,81619,94583,100469,100549,102953,107251,110923,

%T 125789,149827,184903,256169,279863,285101,289573,298327,370421,

%U 406951,459521,471923,472963,492671,493621,497521,499423,502261,504821,569423,582139,597823,631927

%N Primes p such that all digits of p^2 appear in p.

%H Robert Israel, <a href="/A030083/b030083.txt">Table of n, a(n) for n = 1..10000</a>

%p R:= NULL: count:= 0: p:= 2:

%p while count < 100 do

%p p:= nextprime(p);

%p if convert(convert(p^2,base,10),set) subset convert(convert(p,base,10),set) then

%p count:= count+1; R:= R,p

%p fi

%p od:

%p R; # _Robert Israel_, Nov 01 2023

%o (Python)

%o from sympy import isprime

%o def ok(n): return isprime(n) and set(str(n)) >= set(str(n**2))

%o print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Nov 01 2023

%Y Contains A050288.

%Y Cf. A030084.

%K nonn,base

%O 1,1

%A _Patrick De Geest_

%E Offset corrected by _Robert Israel_, Nov 01 2023