Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jan 13 2022 10:00:44
%S 1,2,3,5,6,7,10,13,14,15,17,19,21,22,23,26,29,30,31,34,35,37,42,58,93,
%T 110,145,203,290
%N Numbers from the 290-theorem.
%C The 290-theorem, conjectured by Conway and Schneeberger and proved by Bhargava and Hanke, asserts that a positive definite quadratic form represents all numbers iff it represents the numbers in this sequence. - _T. D. Noe_, Mar 30 2006
%D J. H. Conway and W. A. Schneeberger, personal communication.
%H Manjul Bhargava and Jonathan Hanke, <a href="http://www.wordpress.jonhanke.com/wp-content/uploads/2011/09/290-Theorem-preprint.pdf">Universal quadratic forms and the 290-Theorem</a> Inventiones Math., 2005
%H Jangwon Ju and Byeong-Kweon Oh, <a href="https://arxiv.org/abs/1809.03673">Universal mixed sums of generalized 4- and 8-gonal numbers</a>, arXiv:1809.03673 [math.NT], 2018. See p. 1.
%H Alexander J. Hahn, <a href="https://math.nd.edu/assets/20630/hahntoulouse.pdf">Quadratic Forms over Z from Diophantus to the 290 Theorem</a>, Adv. Appl. Clifford Alg. 18 (2008), 665-676.
%H Jangwon Ju, <a href="https://arxiv.org/abs/2201.04355">Almost universal sums of triangular numbers with one exception</a>, arXiv:2201.04355 [math.NT], 2022.
%H Yong Suk Moon, <a href="https://web.archive.org/web/20140814082644/https://math.stanford.edu/theses/moon.pdf">Universal Quadratic Forms and the 15-Theorem and 290-Theorem</a>
%H K. Ono, <a href="http://www.ams.org/notices/200606/fea-ono.pdf">Honoring a gift from Kumbakonam</a>, Notices Amer. Math. Soc., 53 (2006), 640-651.
%H Ivars Peterson, <a href="http://www.sciencenews.org/articles/20060311/bob9.asp">All Square: Science News Online</a>
%H Ivars Peterson, MathTrek, <a href="http://blog.sciencenews.org/2006/03/all_square.html">All Square</a>
%Y Cf. A030050, A116582, A154363.
%K nonn,fini,full,nice
%O 1,2
%A _N. J. A. Sloane_