login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030050 Numbers from the Conway-Schneeberger 15-theorem. 4
1, 2, 3, 5, 6, 7, 10, 14, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The 15-theorem asserts that a positive definite integral quadratic form represents all numbers iff it represents the numbers in this sequence. "Integral" here means that the quadratic form equals x^T M x, where x is an integer vector and M is an integer matrix. - T. D. Noe, Mar 30 2006

Union of the first five triangular numbers {1, 3, 6, 10, 15} and their Möbius transform {1, 2, 5, 7, 14}, in ascending order. - Daniel Forgues, Feb 24 2015

REFERENCES

Manjul Bhargava, On the Conway-Schneeberger fifteen theorem, Contemporary Mathematics 272 (1999), 27-37.

J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 141.

J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.

J. H. Conway and W. A. Schneeberger, personal communication.

LINKS

Table of n, a(n) for n=1..9.

Manjul Bhargava, The Fifteen Theorem and Generalizations

Ivars Peterson, All Square: Science News Online (subscription required)

Wikipedia, 15 and 290 theorems.

FORMULA

Daniel Forgues, Feb 24 & 26 2015 (Start)

a(2n-1) = t_n = n*(n+1)/2 = A000217(n), 1 <= n <= 5;

a(2n) = Sum{d|(n+1)} mu(d) t_{(n+1)/d} = A007438(n+1), 1 <= n <= 4. (End)

EXAMPLE

a(2*1) = Sum{d|(1+1)} mu(d) t_{(1+1)/d} = 1 * t_2 + (-1) * t_1 = 3 - 1 = 2;

a(2*2) = Sum{d|(2+1)} mu(d) t_{(2+1)/d} = 1 * t_3 + (-1) * t_1 = 6 - 1 = 5;

a(2*3) = Sum{d|(3+1)} mu(d) t_{(3+1)/d} = 1 * t_4 + (-1) * t_2 + 0 * t_1 = 10 - 3 = 7;

a(2*4) = Sum{d|(4+1)} mu(d) t_{(4+1)/d} = 1 * t_5 + (-1) * t_1 = 15 - 1 = 14.

CROSSREFS

Cf. A030051, A116582, A154363.

Sequence in context: A139826 A182048 A028722 * A018336 A194359 A220355

Adjacent sequences:  A030047 A030048 A030049 * A030051 A030052 A030053

KEYWORD

nonn,fini,full,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 27 01:17 EDT 2015. Contains 257849 sequences.