login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^2 is palindromic in base 7.
13

%I #23 Sep 08 2022 08:44:50

%S 0,1,2,4,8,10,11,20,32,40,50,57,64,80,160,200,344,400,500,550,557,730,

%T 1000,1376,1432,1892,2402,2451,2500,2752,2801,3440,3784,3902,5101,

%U 5266,6880,8296,9460,9608,9804,16808,17200,19216,19608,22693

%N Numbers k such that k^2 is palindromic in base 7.

%H Marius A. Burtea, <a href="/A029992/b029992.txt">Table of n, a(n) for n = 1..237</a>

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/square.htm">Palindromic Squares</a>

%e 8^2 = 64, which is 121 in base 7, and since that's palindromic, 8 is in the sequence.

%e 9^2 = 81, which is 144 in base 7, but since that's not palindromic, 9 is not in the sequence.

%t Select[Range[0, 16806], IntegerDigits[#^2, 7] == Reverse[IntegerDigits[#^2, 7]] &] (* _Alonso del Arte_, Jan 21 2020 *)

%o (Scala) (0 to 16806).filter(n => Integer.toString(n * n, 7) == Integer.toString(n * n, 7).reverse) // _Alonso del Arte_, Jan 21 2020

%o (Magma) [k:k in [0..23000]| Seqint(Intseq(k^2,7)) eq Seqint(Reverse(Intseq(k^2,7)))]; // _Marius A. Burtea_, Jan 22 2020

%Y Cf. A002440 (squares written in base 7), A007093.

%Y Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), this sequence (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

%K nonn,base

%O 1,3

%A _Patrick De Geest_