Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 14 2024 11:59:19
%S 0,1,2,3,4,5,6,7,8,9,10,11,13,26,39,52,65,78,91,104,117,130,143,145,
%T 157,169,181,193,205,217,229,241,253,265,277,290,302,314,326,338,350,
%U 362,374,386,398,410,422,435,447,459,471,483,495,507,519,531
%N Numbers that are palindromic in base 12.
%C Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - _Charles R Greathouse IV_, May 04 2020
%H John Cerkan, <a href="/A029957/b029957.txt">Table of n, a(n) for n = 1..10000</a>
%H Javier Cilleruelo, Florian Luca and Lewis Baxter, <a href="https://doi.org/10.1090/mcom/3221">Every positive integer is a sum of three palindromes</a>, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, <a href="http://arxiv.org/abs/1602.06208">arXiv preprint</a>, arXiv:1602.06208 [math.NT], 2017.
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/nobase10.htm">Palindromic numbers beyond base 10</a>.
%H Phakhinkon Phunphayap and Prapanpong Pongsriiam, <a href="https://doi.org/10.13140/RG.2.2.23202.79047">Estimates for the Reciprocal Sum of b-adic Palindromes</a>, 2019.
%H <a href="/index/Ab#basis_03">Index entries for sequences that are an additive basis</a>, order 3.
%F Sum_{n>=2} 1/a(n) = 3.4989489... (Phunphayap and Pongsriiam, 2019). - _Amiram Eldar_, Oct 17 2020
%t f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,12],AppendTo[lst,n]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jul 08 2009 *)
%o (PARI) isok(n) = my(d=digits(n, 12)); d == Vecrev(d); \\ _Michel Marcus_, May 13 2017
%o (Python)
%o from sympy import integer_log
%o from gmpy2 import digits
%o def A029957(n):
%o if n == 1: return 0
%o y = 12*(x:=12**integer_log(n>>1,12)[0])
%o return int((c:=n-x)*x+int(digits(c,12)[-2::-1]or'0',12) if n<x+y else (c:=n-y)*y+int(digits(c,12)[-1::-1]or'0',12)) # _Chai Wah Wu_, Jun 14 2024
%Y Cf. A029958, A029959, A029960 (in bases 13..15).
%K nonn,base,easy
%O 1,3
%A _Patrick De Geest_