login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cusps of Gamma_1(n)\P_1(Q).
3

%I #17 Dec 15 2017 07:26:59

%S 1,2,2,3,4,4,6,6,8,8,10,10,12,12,16,14,16,16,18,20,24,20,22,24,28,24,

%T 30,30,28,32,30,32,40,32,48,40,36,36,48,48,40,48,42,50,64,44,46,56,60,

%U 56,64,60,52,60,80,72,72,56

%N Number of cusps of Gamma_1(n)\P_1(Q).

%D F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 158.

%H G. C. Greubel, <a href="/A029936/b029936.txt">Table of n, a(n) for n = 1..10000</a>

%F Except for n=1, 2, 4, this is A029935(n)/2.

%F a(n) = (1/2)*Sum_{d divides n} phi(d)*phi(n/d), with a(1)=1, a(2)=2, a(3)=2, a(4)=3, and phi(n) = A000010(n). - _G. C. Greubel_, Dec 13 2017

%t a[1] = 1; a[2] = 2; a[4] = 3; a[n_] := DivisorSum[n, EulerPhi[#]* EulerPhi[n/#]&]/2; Array[a, 60] (* _Jean-François Alcover_, Oct 03 2016 *)

%o (PARI) for(n=1,30, print1(if(n==1, 1, if(n==2, 2, if(n==3, 2, if(n==4, 3, sumdiv(n, d, eulerphi(d)*eulerphi(n/d))/2)))), ", ")) \\ _G. C. Greubel_, Dec 13 2017

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_