Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 28 2019 03:25:46
%S 2,6,8,15,12,28,16,135,80,198,24,455,28,360,256,2295,36,2660,40,2079,
%T 1408,828,48,11375,312,1134,2240,6525,60,76384,64,75735,1088,1890,
%U 3456,1599325,76,2340,4480,767151,84
%N Numerator of n * Product_{d|n} (1 + 1/d).
%H Amiram Eldar, <a href="/A029933/b029933.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%F Given p prime, a(p) = 2p + 2, since p(1 + 1/1)(1 + 1/p) = 2p + 2, see A089241. - _Alonso del Arte_, Mar 02 2017
%e a(6) = 28. The divisors of 6 are 1, 2, 3, 6. We multiply 2 * (1 + 1/2)(1 + 1/3)(1 + 1/6) to get 14/3, which multiplied by 6 is 28.
%e a(7) = 16, since 2 * 7 + 2 = 16.
%e a(8) = 135. The divisors of 8 are 1, 2, 4, 8. We multiply 2 * (1 + 1/2)(1 + 1/4)(1 + 1/8) to get 135/32, which multiplied by 8 is 135/4, the numerator of which is 135.
%p with(numtheory): A029933 := proc(n) local i,j; j := n; for i in divisors(n) do j := j*(1+1/i); od; end;
%t Numerator[Table[n * Times@@((1 + 1/#)&/@Divisors[n]), {n, 50}]] (* _Harvey P. Dale_, Dec 14 2014 *)
%o (PARI) a(n) = my(d=divisors(n)); numerator(n*prod(i=1, #d, (d[i]+1)/d[i])); \\ _Michel Marcus_, Mar 06 2017
%Y Cf. A029934 (denominators).
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_