%I #17 Feb 26 2018 09:14:00
%S 691,65520,134250480,11606736960,274945048560,3199218815520,
%T 23782204031040,129554448266880,563087459516400,2056098632318640,
%U 6555199353000480,18693620658498240,48705965462306880,117422349017369760,265457064498837120,566735214731736960,1153203117089652720
%N Eisenstein series E_12(q) (alternate convention E_6(q)), multiplied by 691.
%D R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
%D N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
%D J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.
%H Seiichi Manyama, <a href="/A029828/b029828.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Ed#Eisen">Index entries for sequences related to Eisenstein series</a>
%p E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(12);
%t Table[If[n == 0, 691, 65520 DivisorSigma[11, n]], {n, 0, 16}] (* _Jean-François Alcover_, Feb 26 2018 *)
%o (PARI) a(n)=if(n<1,691*(n==0),65520*sigma(n,11))
%Y Cf. A037164.
%Y Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
%K nonn
%O 0,1
%A _N. J. A. Sloane_