login
A029800
Numbers k such that k, k^2 and k^3 all have the same set of digits.
6
0, 1, 10, 100, 1000, 10000, 100000, 1000000, 4152760, 9845261, 10000000, 10253497, 10357426, 10384796, 10972365, 12546973, 13247805, 15942760, 16537428, 17534690, 18326705, 18392576, 18492763, 18659437, 19728603, 21648705, 23956714, 24130568, 24351980, 24931756, 27681350
OFFSET
1,3
LINKS
FORMULA
a(n) ~ n. - David A. Corneth, Nov 13 2023
EXAMPLE
9845261 is in the sequence as 9845261 has digits {1, 2, 4, 5, 6, 8, 9}, 9845261^2 = 96929164158121 has digits {1, 2, 4, 5, 6, 8, 9} as does 9845261^3 = 954292919648546514581. - David A. Corneth, Nov 13 2023
MATHEMATICA
Select[Range[0, 2*10^7], Union[IntegerDigits[#]]==Union[ IntegerDigits[ #^2]] == Union[ IntegerDigits[ #^3]]&] (* Harvey P. Dale, Nov 04 2015 *)
PROG
(PARI)
is(n) = {
my(s = Set(digits(n)));
s == Set(digits(n^2)) && s == Set(digits(n^3))
} \\ David A. Corneth, Nov 13 2023
CROSSREFS
Cf. A011557 (a subsequence).
Sequence in context: A135654 A219112 A232661 * A232662 A168070 A263019
KEYWORD
nonn,base
EXTENSIONS
More terms from David A. Corneth, Nov 13 2023
STATUS
approved