login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Q(sqrt(n)) has class number 4.
4

%I #16 May 13 2013 01:54:04

%S 82,130,145,170,195,210,219,231,255,274,290,291,322,323,330,370,390,

%T 410,434,435,438,445,455,462,483,505,510,514,530,546,555,570,579,582,

%U 595,610,615,626,627,651,658,663,674,689,690,706,714,715,723,731,754,759,770

%N Q(sqrt(n)) has class number 4.

%H Charles R Greathouse IV, <a href="/A029704/b029704.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%t Select[Range[770], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 4 &] (* _Arkadiusz Wesolowski_, Oct 18 2012 *)

%o (PARI) is(n)=if(issquarefree(n), my(c=bnfinit('x^2-n).cyc); c==[4] || c==[2,2], 0) \\ _Charles R Greathouse IV_, Oct 18 2012

%Y Cf. A003172, A029702-A029703, A029705, A218038-A218042.

%K nonn

%O 1,1

%A Paolo Dominici (pl.dm(AT)libero.it)

%E Initial term added by _Arkadiusz Wesolowski_, Oct 18 2012