login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Q(sqrt(n)) has class number 2.
13

%I #22 Aug 25 2014 13:09:26

%S 10,15,26,30,34,35,39,42,51,55,58,65,66,70,74,78,85,87,91,95,102,105,

%T 106,110,111,114,115,119,122,123,138,143,146,154,155,159,165,174,178,

%U 182,183,185,186,187,190,194,202,203,205,215,218,221,222,230,238,246

%N Q(sqrt(n)) has class number 2.

%C Smallest term that is in A146209 but not this sequence is 79, since Q(sqrt(79)) has class number 3. - _Alonso del Arte_, Aug 25 2014

%H Charles R Greathouse IV, <a href="/A029702/b029702.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%t Select[Range[246], SquareFreeQ[#] && NumberFieldClassNumber@Sqrt[#] == 2 &] (* _Arkadiusz Wesolowski_, Oct 22 2012 *)

%o (PARI)

%o A007947(n)={my(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]); }

%o { for (n=2, 10^3,

%o if ( n!=A007947(n), next() );

%o K = bnfinit(x^2 - n);

%o if ( K.cyc == [2], print1( n, ", ") );

%o ); }

%o /* _Joerg Arndt_, Oct 18 2012 */

%Y Cf. A003172, A029703-A029705, A218038-A218042.

%K nonn

%O 1,1

%A Paolo Dominici (pl.dm(AT)libero.it)