Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 22 2024 06:06:27
%S 1,3,9,19,27,41,103,147,189,441,567,711,6759,15353,24441,59823,209903,
%T 1430217,2848851,2969973,13358067,146247471,289542573,1891846557,
%U 2388085659,4489093899,5345125899,5455876131,9843149241
%N Numbers k that divide the (left) concatenation of all numbers <= k written in base 10 (most significant digit on left).
%C No other terms below 10^10.
%H <a href="/index/N#concat">Index entries for related sequences</a>
%e 19 is a term since 19181716151413121110987654321 is divisible by 19.
%t b = 10; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[#, b], c], b], #] &] (* _Robert Price_, Mar 12 2020 *)
%t Select[Range[134*10^5],Divisible[FromDigits[Flatten[IntegerDigits/@Range[#,1,-1]]],#]&] (* _Harvey P. Dale_, Oct 09 2022 *)
%o (Python)
%o def concat_mod(base, k, mod):
%o total, offset, digits, n1 = 0, 0, 1, 1
%o while n1 <= k:
%o n2, p = min(n1*base-1, k), n1*base
%o # Compute ((p-1)*n2-1)*p**(n2-n1+1)-(n1-1)*p+n1 divided by (p-1)**2.
%o # Since (a//b)%mod == (a%(b*mod))//b, compute the numerator mod (p-1)**2*mod.
%o tmp = pow(p,n2-n1+1,(p-1)**2*mod)
%o tmp = ((p-1)*n2-1)*tmp-(n1-1)*p+n1
%o tmp = (tmp%((p-1)**2*mod))//(p-1)**2
%o total += tmp*pow(base,offset,mod)
%o offset, digits, n1 = offset+digits*(n2-n1+1), digits+1, p
%o return total%mod
%o for k in range(1,10**10):
%o if concat_mod(10, k, k) == 0: print(k) # _Jason Yuen_, Jan 14 2024
%Y Cf. A029447-A029470, A029471-A029494, A029495-A029518, A029519-A029542, A061931-A061954, A061955-A061978.
%K nonn,base,more
%O 1,2
%A _Olivier Gérard_
%E 6759 from Andrew Gacek (andrew(AT)dgi.net), Feb 20 2000
%E More terms from Larry Reeves (larryr(AT)acm.org), May 24 2001
%E Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
%E a(18)-a(21) from _Max Alekseyev_, May 15 2011
%E a(22)-a(29) from _Jason Yuen_, Jan 14 2024