login
Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^10)).
0

%I #8 Apr 16 2023 21:36:22

%S 1,0,0,0,0,1,0,0,1,1,2,0,0,1,1,2,1,1,3,2,3,1,1,3,3,4,3,3,5,4,5,3,4,6,

%T 6,7,6,6,8,7,9,7,8,10,10,12,10,10,13,12,15,12,13,16,16,18,16,16,20,19,

%U 22,19,20,24,24,26,24,24,29

%N Expansion of 1/((1-x^5)(1-x^8)(1-x^9)(1-x^10)).

%H <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1).

%F G.f.: 1/((1-x^5)*(1-x^8)*(1-x^9)*(1-x^10)).

%F a(n) = a(n-5) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) - a(n-15) - a(n-17) - a(n-18) - a(n-19) + a(n-22) + a(n-23) + a(n-24) + a(n-27) - a(n-32). - _Wesley Ivan Hurt_, Apr 16 2023

%t CoefficientList[Series[1/((1-x^5)(1-x^8)(1-x^9)(1-x^10)), {x, 0, 100}], x] (* _Jinyuan Wang_, Mar 11 2020 *)

%K nonn,easy

%O 0,11

%A _N. J. A. Sloane_