login
A029290
Expansion of 1/((1-x^3)(1-x^5)(1-x^10)(1-x^12)).
1
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 2, 5, 4, 4, 5, 5, 7, 5, 7, 7, 6, 11, 7, 9, 11, 9, 13, 12, 12, 13, 14, 17, 14, 18, 17, 17, 23, 19, 21, 24, 22, 27, 26, 27, 28, 30, 33, 31, 35, 35, 35, 43, 38, 41, 45, 43
OFFSET
0,11
COMMENTS
Number of partitions of n into parts 3, 5, 10, and 12. - Vincenzo Librandi, Jun 04 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 1, 0, 0, -1, 0, 1, 0, 1, -1, 0, -2, 0, -1, 1, 0, 1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1).
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^10) (1 - x^12)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 04 2014 *)
LinearRecurrence[{0, 0, 1, 0, 1, 0, 0, -1, 0, 1, 0, 1, -1, 0, -2, 0, -1, 1, 0, 1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1}, {1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 2, 5, 4, 4, 5, 5, 7, 5, 7, 7, 6}, 70] (* Harvey P. Dale, Oct 02 2021 *)
PROG
(PARI) Vec(1/((1-x^3)*(1-x^5)*(1-x^10)*(1-x^12)) + O(x^80)) \\ Jinyuan Wang, Mar 11 2020
CROSSREFS
Sequence in context: A105272 A060438 A106190 * A115311 A035436 A242210
KEYWORD
nonn,easy
STATUS
approved