Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 11 2020 23:22:24
%S 1,0,0,1,0,1,1,0,1,2,1,1,3,1,2,4,1,3,5,2,4,6,3,5,8,4,6,10,5,8,12,6,10,
%T 14,8,12,17,10,14,20,12,17,23,14,20,27,17,23,31,20,27,35,23,31,40,27,
%U 35,45,31,40,51,35,45,57,40
%N Expansion of 1/((1-x^3)(1-x^5)(1-x^9)(1-x^12)).
%C Number of partitions of n into parts 3, 5, 9, and 12. - _Vincenzo Librandi_, Jun 04 2014
%H Vincenzo Librandi, <a href="/A029288/b029288.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 1, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, 1, 0, 0, -1).
%t CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^9) (1 - x^12)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 04 2014 *)
%o (PARI) Vec(1/((1-x^3)*(1-x^5)*(1-x^9)*(1-x^12)) + O(x^80)) \\ _Jinyuan Wang_, Mar 11 2020
%K nonn,easy
%O 0,10
%A _N. J. A. Sloane_