OFFSET
0,9
COMMENTS
Number of partitions of n into parts 3, 5, 8, and 12. - Vincenzo Librandi, Jun 04 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, -1, 1, -1, 0, -1, 1, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, -1).
MAPLE
M:= Matrix(28, (i, j)->
`if`(i=j-1 or j=1 and i in [3, 5, 12, 16, 23, 25], 1,
`if`(j=1 and i in [11, 13, 15, 17, 28], -1, 0))):
a:= n-> (M^(n))[1, 1]:
seq(a(n), n=0..70); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1-x^3)(1-x^5)(1-x^8)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 27 2011 *)
PROG
(PARI) Vec(1/((1-x^3)*(1-x^5)*(1-x^8)*(1-x^12)) + O(x^80)) \\ Jinyuan Wang, Mar 11 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved