login
Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^12)).
1

%I #14 Mar 12 2020 07:33:52

%S 1,0,0,1,1,0,1,1,2,1,1,2,4,1,2,4,5,2,4,5,7,4,5,7,11,5,7,11,13,7,11,13,

%T 17,11,13,17,23,13,17,23,27,17,23,27,33,23,27,33,42,27,33,42,48,33,42,

%U 48,57,42,48,57,69,48,57,69

%N Expansion of 1/((1-x^3)(1-x^4)(1-x^8)(1-x^12)).

%C Number of partitions of n into parts 3, 4, 8, and 12. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029265/b029265.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,0,0,-1,1,0,0,-1,0,0,0,0,-1,0,0,1,-1,0,0,1,1,0,0,-1).

%t CoefficientList[Series[1/((1 - x^3) (1 - x^4) (1 - x^8) (1 - x^12)), {x, 0, 70}], x] (* _Harvey P. Dale_, Nov 26 2011 *)

%o (PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^8)*(1-x^12)) + O(x^80)) \\ _Jinyuan Wang_, Mar 12 2020

%K nonn,easy

%O 0,9

%A _N. J. A. Sloane_