login
Expansion of 1/((1-x^2)*(1-x^9)*(1-x^11)*(1-x^12)).
1

%I #11 Mar 12 2020 22:19:40

%S 1,0,1,0,1,0,1,0,1,1,1,2,2,2,2,2,2,2,3,2,4,3,5,4,6,4,6,5,6,6,7,7,8,9,

%T 9,10,11,10,12,11,13,12,15,13,17,16,18,18,20,19,21,21,22,23,25,25,28,

%U 28,30,30,33,31,35,34,37,37

%N Expansion of 1/((1-x^2)*(1-x^9)*(1-x^11)*(1-x^12)).

%C Number of partitions of n into parts 2, 9, 11, and 12. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029243/b029243.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_34">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -1).

%t CoefficientList[Series[1/((1 - x^2) (1 - x^9) (1 - x^11) (1 - x^12)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 03 2014 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^9)*(1-x^11)*(1-x^12)) + O(x^80)) \\ _Jinyuan Wang_, Mar 12 2020

%K nonn,easy

%O 0,12

%A _N. J. A. Sloane_