login
Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^11)).
1

%I #14 Mar 15 2020 21:02:44

%S 1,0,1,0,1,0,1,1,1,1,2,2,2,2,3,2,3,3,4,3,5,5,6,5,7,6,7,7,9,8,10,10,12,

%T 11,13,13,14,14,16,16,18,18,21,20,23,22,25,24,27,27,30,30,33,33,36,36,

%U 39,39,42,42,46,46,50,50

%N Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^11)).

%C Number of partitions of n into parts 2, 7, 10, and 11. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029233/b029233.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 0, 0, -1, -1, 1, 1, -1, 0, 1, 0, 0, 0, 0, 1, 0, -1).

%t CoefficientList[Series[1/((1 - x^2) (1 - x^7) (1 - x^10) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 03 2014 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020

%K nonn,easy

%O 0,11

%A _N. J. A. Sloane_