login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^12)).
1

%I #15 Mar 15 2020 21:40:59

%S 1,0,1,0,1,1,2,1,2,1,3,2,5,2,5,3,6,5,8,5,9,6,11,8,14,9,15,11,17,14,21,

%T 15,23,17,26,21,31,23,33,26,37,31,43,33,46,37,51,43,58,46,62,51,68,58,

%U 76,62,81,68,88,76,98,81

%N Expansion of 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^12)).

%C Number of partitions of n into parts 2, 5, 6, and 12. - _Joerg Arndt_, Jun 02 2014

%H Vincenzo Librandi, <a href="/A029198/b029198.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,1,-1,-1,0,0,-1,1,1,-1,0,0,-1,-1,1,1,0,0,1,0,-1).

%t CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)(1-x^12)),{x,0,80}],x] (* _Harvey P. Dale_, Jun 23 2012 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^12)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020

%K nonn,easy

%O 0,7

%A _N. J. A. Sloane_, Dec 11 1999