login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^6)).
0

%I #9 Mar 15 2020 22:21:09

%S 1,0,1,0,2,1,3,1,4,2,6,3,8,4,10,6,13,8,16,10,20,13,24,16,29,20,34,24,

%T 40,29,47,34,54,40,62,47,71,54,80,62,91,71,102,80,114,91,127,102,141,

%U 114,156,127,172,141,189,156

%N Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^6)).

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,1,0,-1,-1,-1,-1,0,1,1,0,1,0,-1).

%F a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=2, a(5)=1, a(6)=3, a(7)=1, a(8)=4, a(9)=2, a(10)=6, a(11)=3, a(12)=8, a(13)=4, a(14)=10, a(15)=6, a(16)=13, a(n) = a(n-2) + a(n-4) + a(n-5) - a(n-7) - a(n-8) - a(n-9) - a(n-10) + a(n-12) + a(n-13) + a(n-15) - a(n-17). - Harvey P. Dale, Dec 19 2011

%t CoefficientList[Series[1/((1-x^2)(1-x^4)(1-x^5)(1-x^6)),{x,0,60}],x] (* _Harvey P. Dale_, Dec 19 2011 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^4)*(1-x^5)*(1-x^6)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_