login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029162
Expansion of 1/((1-x^2)(1-x^3)(1-x^8)(1-x^10)).
1
1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 8, 6, 10, 8, 12, 10, 14, 12, 17, 14, 20, 17, 23, 20, 27, 23, 31, 27, 35, 31, 40, 35, 45, 40, 51, 45, 57, 51, 63, 57, 70, 63, 78, 70, 86, 78, 94, 86, 103, 94, 113, 103, 123, 113, 134, 123, 145, 134, 157, 145, 170, 157
OFFSET
0,7
COMMENTS
Number of partitions of n into parts 2, 3, 8, and 10. - Stefano Spezia, Mar 07 2023
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1,0,0,1,0,0,-1,-1,0,0,1,0,0,-1,0,1,1,0,-1).
FORMULA
a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=3, a(9)=2, a(10)=4, a(11)=3, a(12)=5, a(13)=4, a(14)=6, a(15)=5, a(16)=8, a(17)=6, a(18)=10, a(19)=8, a(20)=12, a(21)=10, a(22)=14, a(n)=a(n-2)+ a(n-3)-a(n-5)+a(n-8)-a(n-11)-a(n-12)+a(n-15)-a(n-18)+a(n-20)+a(n-21)- a(n-23). - Harvey P. Dale, Nov 06 2012
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^8)(1-x^10)), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 1, 0, -1, 0, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 0, -1, 0, 1, 1, 0, -1}, {1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 8, 6, 10, 8, 12, 10, 14}, 60] (* Harvey P. Dale, Nov 06 2012 *)
PROG
(PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^8)*(1-x^10)) + O(x^70)) \\ Michel Marcus, Mar 08 2023
CROSSREFS
Sequence in context: A028242 A030451 A241825 * A325132 A225854 A371973
KEYWORD
nonn,easy
STATUS
approved