Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 30 2015 23:10:26
%S 1,0,1,1,1,1,3,1,3,4,3,4,7,4,7,9,7,9,14,9,14,17,14,17,24,17,24,29,24,
%T 29,38,29,38,45,38,45,57,45,57,66,57,66,81,66,81,93,81,93,111,93,111,
%U 126,111,126,148,126,148,166
%N Expansion of 1/((1-x^2)(1-x^3)(1-x^6)(1-x^9)).
%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 1, 0, -1, 1, 0, -1, 0, 0, 0, -1, 0, 1, -1, 0, 1, 1, 0, -1).
%F a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=3, a(7)=1, a(8)=3, a(9)=4, a(10)=3, a(11)=4, a(12)=7, a(13)=4, a(14)=7, a(15)=9, a(16)=7, a(17)=9, a(18)=14, a(19)=9, a(n)=a(n-2)+a(n-3)-a(n-5)+a(n-6)-a(n-8)- a(n-12)+ a(n-14)-a(n-15)+a(n-17)+a(n-18)-a (n-20) [From Harvey P. Dale, Feb 20 2012]
%t CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^6)(1-x^9)),{x,0,60}],x] (* or *) LinearRecurrence[{0,1,1,0,-1,1,0,-1,0,0,0,-1,0,1,-1,0,1,1,0,-1},{1,0,1,1,1,1,3,1,3,4,3,4,7,4,7,9,7,9,14,9},60] (* _Harvey P. Dale_, Feb 20 2012 *)
%K nonn
%O 0,7
%A _N. J. A. Sloane_.