login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029149
Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)).
1
1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 8, 10, 11, 11, 14, 14, 16, 17, 20, 20, 23, 25, 26, 29, 32, 32, 37, 38, 41, 44, 48, 49, 54, 57, 60, 64, 69, 70, 77, 80, 84, 89, 95, 97, 105, 109, 114, 120, 127, 130, 139, 144, 150, 157, 166, 169, 180, 186
OFFSET
0,6
COMMENTS
a(n) is the number of partitions of n into parts 2, 3, 5, and 12. [Joerg Arndt, Jan 10 2018]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,0,-1,-1,0,1,0,1,0,-1,-1,0,0,0,1,1,0,-1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)).
a(n) = a(n-2)+a(n-3)-a(n-7)-a(n-8)+a(n-10)+a(n-12)-a(n-14)-a(n-15)+a(n-19)+a(n-20)-a(n-22). - Wesley Ivan Hurt, May 20 2021
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^5)(1-x^12)), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 1, 1, 0, 0, 0, -1, -1, 0, 1, 0, 1, 0, -1, -1, 0, 0, 0, 1, 1, 0, -1}, {1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 8, 10, 11, 11, 14, 14}, 60] (* Harvey P. Dale, Jan 08 2018 *)
PROG
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)))); // Vincenzo Librandi, Jan 10 2018
(PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^12)) + O(x^70)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Sequence in context: A120179 A032739 A240868 * A080570 A163001 A239913
KEYWORD
nonn
STATUS
approved