login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^11)).
0

%I #15 Mar 18 2020 08:24:52

%S 1,0,1,1,2,1,3,2,4,3,5,5,7,6,9,9,11,11,14,14,17,17,21,21,25,25,30,30,

%T 35,35,41,41,47,48,54,55,62,63,70,72,79,81,89,91,100,102,111,114,124,

%U 126,137,140,151,154,166,170

%N Expansion of 1/((1-x^2)(1-x^3)(1-x^4)(1-x^11)).

%C Number of partitions of n into parts 2, 3, 4, and 11. - _Joerg Arndt_, Jun 20 2013

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,-1,-1,-1,0,1,0,1,0,-1,-1,-1,1,1,1,0,-1).

%F a(n) = floor((198*(-1+(-1)^n)*(-1)^((n-1)*n/2)+(n+10)*(2*n^2+40*n+125+99*(-1)^n)+1216)/3168). - _Tani Akinari_, Jun 20 2013

%t CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)(1-x^11)),{x,0,60}],x] (* _Harvey P. Dale_, Sep 07 2011 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^11)) + O(x^99)) \\ _Jinyuan Wang_, Mar 18 2020

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_