login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A029099
Expansion of 1/((1-x)(1-x^5)(1-x^8)(1-x^12)).
0
1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 25, 27, 28, 31, 33, 35, 37, 40, 43, 45, 47, 51, 54, 57, 59, 63, 67, 70, 73, 78, 82, 86, 89, 94, 99, 103, 107, 113, 118, 123
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 8 and 12. - Ilya Gutkovskiy, May 21 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 1, -2, 1, 0, 0, -1, 1, 0, -1, 1, 0, 0, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=2, a(7)=2, a(8)=3, a(9)=3, a(10)=4, a(11)=4, a(12)=5, a(13)=6, a(14)=6, a(15)=7, a(16)=8, a(17)=9, a(18)=10, a(19)=10, a(20)=12, a(21)=13, a(22)=14, a(23)=15, a(24)=17, a(25)=19, a(n)=a(n-1)+a(n-5)-a(n-6)+a(n-8)-a(n-9)+a(n-12)-2*a(n-13)+a(n-14)-a(n-17)+a(n-18)-a(n-20)+a(n-21)+a(n-25)-a(n-26). - Harvey P. Dale, Oct 18 2012
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^5)(1-x^8)(1-x^12)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 1, -2, 1, 0, 0, -1, 1, 0, -1, 1, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 10, 12, 13, 14, 15, 17, 19}, 70] (* Harvey P. Dale, Oct 18 2012 *)
CROSSREFS
Sequence in context: A194161 A051066 A029159 * A029245 A174576 A288122
KEYWORD
nonn
AUTHOR
STATUS
approved