login
Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^12)).
1

%I #11 May 17 2017 18:00:12

%S 1,1,1,1,2,3,3,3,4,5,6,6,8,9,10,11,13,15,16,17,20,22,24,25,29,32,34,

%T 36,40,44,47,49,54,58,62,65,71,76,80,84,91,97,102,106,114,121,127,132,

%U 141,149,156,162,172,181,189

%N Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^12)).

%C Number of partitions of n into parts 1, 4, 5 and 12. - _Ilya Gutkovskiy_, May 17 2017

%H G. C. Greubel, <a href="/A029069/b029069.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,0,-1,0,0,-1,1,0,1,-1,0,0, -1,0,1,0,0,1,-1).

%t CoefficientList[Series[1/((1-x)(1-x^4)(1-x^5)(1-x^12)),{x,0,60}],x] (* _Harvey P. Dale_, Aug 11 2011 *)

%o (PARI) x='x+O('x^50); Vec(1/((1 - x)*(1 - x^4)*(1 - x^5)*(1 - x^12))) \\ _G. C. Greubel_, May 17 2017

%K nonn

%O 0,5

%A _N. J. A. Sloane_